What Is Glass Performance?

What Is Glass Performance?

When we think of "performance," cars, computers, or cameras might come to mind. But did you know that glass—a seemingly inanimate material—can also have performance metrics? Understanding glass performance involves exploring how glass meets specific functional requirements in buildings and vehicles.

Glass plays a vital role in protecting interiors from external elements like rain, wind, and extreme temperatures while ensuring transparency and maintaining structural integrity. To achieve these objectives, glass must control several factors, including:

  1. Solar Radiation (visible sunlight and artificial lighting)
  2. Temperature (cold and heat)
  3. Moisture (rain and condensation)
  4. Structural Loads (wind and seismic forces)
  5. Sound (interior and exterior noise control)

This article focuses on the first two elements—Solar Radiation and Temperature—as moisture and structural load management often involve framing and gasketing systems. Sound control will be addressed in a future article.

Understanding Glass and Solar Energy

Visible light is just a small portion of the electromagnetic spectrum, ranging from 380 to 780 nanometers (nm) or 400 to 790 terahertz (THz). Glass also interacts with other wavelengths of solar energy, such as:

  • Infrared (IR): Associated with heat.
  • Ultraviolet (UV): Responsible for fading materials over time.

What Is Glass Performance?

To measure how effectively glass performs, three primary metrics are used:

  1. Visible Light Transmittance (VLT): The percentage of visible light passing through glass. For example, SN68 Clear IG has a VLT of 68%, meaning it allows 68% of visible light to pass through.
  2. U-Value: A measure of heat transfer resistance. It’s expressed in units like Btu/hr·ft²·°F or W/m²·K. A lower U-value indicates better insulation and reduced heat transfer.
  3. Solar Heat Gain Coefficient (SHGC): This metric represents the total solar radiation passing through the glass, including heat absorbed and re-radiated by the glazing. For instance, SNX51/23 glass has an SHGC of 23, meaning it transmits only 23% of solar heat.

What Is Glass Performance?

Optimizing Glass Performance

The goal for most glass applications is to maximize VLT for optimal natural light while minimizing U-value and SHGC to control heat transfer and solar gain. Achieving this balance often involves:

  • Coatings: Low-emissivity (low-e) coatings or reflective coatings, often made with silver, enhance energy efficiency.
What Is Glass Performance? What Is Glass Performance?
  • Substrate Tints: Glass can be tinted in shades like blue, green, grey, or bronze to modify its properties. Low-iron glass, which lacks tint, is another option for specific applications.

What Is Glass Performance?

Future Insights

Glass technology continues to evolve, offering advanced solutions for energy efficiency and environmental control. Stay tuned for upcoming articles that will dive deeper into moisture management, structural loads, and sound control.


Others

Unlocking Tradition The Application of Mortise and Tenon Structure in Cultural and Creative Product Design

The News 12/05/2025

Unlocking Tradition: The Application of Mortise and Tenon Structure in Cultural and Creative Product Design

The mortise and tenon structure, a cornerstone of traditional Chinese architecture and furniture, is gaining new relevance in modern cultural and creative product design. As a unique joinery method developed over thousands of years, this technique embodies both aesthetic beauty and structural intelligence.

Self-Cleaning Smart Surfaces Nano-Coating Solutions for Modern Architecture & Engineering

The News 21/04/2025

Self-Cleaning Smart Surfaces: Nano-Coating Solutions for Modern Architecture & Engineering

For architects and engineers committed to sustainability, functionality, and aesthetics, self-cleaning surfaces represent a cutting-edge innovation. These advanced materials, inspired by nature and powered by nanotechnology, offer a low-maintenance, eco-friendly solution for modern buildings and infrastructure. Whether integrated into façade systems, glazing, solar installations, or public infrastructure, self-cleaning coatings reduce the need for manual washing, preserve material integrity, and improve hygiene—making them ideal for today’s performance-driven design.

Made in Japan Earthquake-Proof Floating Homes with Air Danshin Technology

The News 09/04/2025

Made in Japan: Earthquake-Proof Floating Homes with Air Danshin Technology

Japan, one of the most earthquake-prone countries in the world, is leading the way in developing innovative earthquake-proof housing solutions. A standout among these is the levitating house by Air Danshin Systems Inc., a revolutionary technology designed to protect lives by lifting homes off the ground during seismic activity. The concept is simple but brilliant: if buildings kill people during earthquakes, why not temporarily lift them away from danger?

Taipei 101 tower  Masterpiece in Earthquake resistant

The News 31/03/2025

Taipei 101 tower : Masterpiece in Earthquake resistant

On March 28, 2025, a powerful earthquake struck Myanmar, causing extensive damage across the country and leaving over 140 people dead. The full extent of destruction was initially unclear, particularly in Myanmar, where a civil war has further complicated rescue and recovery efforts. Neighboring Thailand also felt the impact, with at least six fatalities in Bangkok following the collapse of a high-rise under construction. While this tragedy unfolded, it raises a crucial question: how do some countries successfully build earthquake-resistant structures? One of the best examples is Taiwan.

Using Oysters to Protect Bridge Piers From Folk Knowledge to Sustainable Construction Solutions

The News 28/03/2025

Using Oysters to Protect Bridge Piers: From Folk Knowledge to Sustainable Construction Solutions

Throughout the history of hydraulic construction, the Chinese have relied on folk wisdom to protect bridge foundations and piers from water erosion and the impact of currents. One of the most unique and effective methods is the use of oysters—marine organisms with the ability to adhere firmly to hard surfaces, forming a natural protective layer for structures. Based on real-world observations, this method has gradually been researched and applied in modern construction, becoming a sustainable building solution.

Artificial Islands Definitions & Types

The News 17/03/2025

Artificial Islands: Definitions & Types

Artificial islands are human-made structures built in water bodies, typically in oceans, seas, lakes, or rivers. They are created for various purposes, such as urban expansion, tourism, infrastructure development, military bases, and environmental projects.