Mycelium is the root structure of fungi, consisting of fine thread like filaments called hyphae, which grow within organic materials. It is collected from soil near bamboo roots by fermenting rice underground for five days, then mixed with sugarcane molasses to create a biological serum for fungal cultivation.
Structurally, mycelium contains chitin, a biological polymer with high tensile strength, enabling the hyphae to strongly bind with surrounding particles. Thanks to this characteristic, mycelium serves as a natural binder in the production of biological construction materials known as bio composites [1].
Illustrations at various scales show the structure of fungal hyphae:
(A) Mushroom structure, (B) Hyphae,
(C) Fungal cells, (D) Cell wall of a single hypha
Mycelium bricks are organic and biological bricks made from agricultural waste and mycelium, the fibrous root system of fungi. They thrive in moist, dark environments and can bind surrounding materials effectively.
The mycelium is cultivated from fungi in the Basidiomycota group and combined with the following substrates:
Rice bran (RB)
Sawdust (SD)
Coconut husk fiber (CH)
Sugarcane molasses (SCM) as the growth medium
The mixture is placed in molds and incubated for 25 days to allow the mycelium to develop. It is then baked at 110 to 115 degrees Celsius to stop further growth and stabilize the structure [2].
1.Harvesting Fungal Mycelium (Fig. a and b)
2. Preparing the Base Materials (Fig. c and d)
3. Molding and Incubation (Fig. e)
4. Drying and Curing (Fig. f)
RB, RBM, SD, and SDM bricks are dried at 110 to 115 degrees Celsius.
C and CM bricks are fired at 900 to 1100 degrees Celsius.
5. Mechanical Testing
Mycelium bricks are used for counter cladding, producing a soft translucent glow and striking textures. The material serves both aesthetic and lighting diffusion purposes in high end exhibitions or commercial environments.
Mycelium bricks are assembled into biologically inspired patterns to create artistic walls with LED backlighting. This application is ideal for creative offices, cafes, sustainable showrooms, or event venues.
Mycelium bricks are used to construct semi circular enclosures surrounding virtual reality users. Their lightweight, sound absorbing, and eco friendly nature makes them perfect for tech labs, meditation rooms, or interactive installations.
Mycelium bricks are utilized in large scale buildings with soft, organic forms. Their low weight and strong bonding capability allow for tall, aesthetically pleasing structures that remain environmentally conscious. The combination of biological materials and lighting results in striking green architecture suited to modern sustainable design trends [3].
Mycelium bricks are integrated with wood and fired bricks to create ventilated, semi permanent walls. This design is well suited for garden houses, pavilions, or open air natural spaces [4].
References
1] J. M. C. Ongpeng, E. I. Inciong, V. Sendo, C. Soliman, and A. Siggaoat, “Using waste in producing bio-composite mycelium bricks,” Applied Sciences, vol. 10, no. 15, p. 5303, Jul. 2020. [Online]. Available: https://www.mdpi.com/2076-3417/10/15/5303
[2] A. S. Kanagalakshmi and S. G. S., “Study on mycelium bricks,” Journal of Emerging Technologies and Innovative Research, vol. 8, no. 4, Apr. 2021. [Online]. Available: https://www.jetir.org/papers/JETIRES06036.pdf
[3] Green Construction Board, “Mycelium-based materials: The future of sustainable construction.” [Online]. Available: https://www.greenconstructionboard.org/alternative-materials-mycelium-based-materials
[4] Ecovative Design, “We grow better materials,” Instagram. [Online]. Available: https://www.instagram.com/ecovative
The News 15/08/2025
In the world of natural stone, quartz and quartzite are two names that are often confused—not only because their names sound similar, but also because their appearance shares many similarities. However, they are entirely different materials in terms of origin, structure, and performance characteristics. Quartz is typically an engineered stone, created by combining crushed quartz crystals with resin and additives, while quartzite is a natural stone formed through the metamorphism of quartz-rich sandstone. This difference not only impacts the value of the material but also determines its durability, heat resistance, and suitability for various applications. Understanding how to distinguish between quartz and quartzite will help you choose the right stone for your needs, avoid mistakes, and make the most of your investment.
The News 07/08/2025
In areas with high slip risk—such as bathrooms, swimming pools, public lobbies, or sloped surfaces—selecting tiles with adequate slip resistance is essential. To accurately assess this property, there are currently four widely used testing methods, each aligned with different international standards and suited to specific applications. This article will help you understand each method, how to interpret the results, and how to apply them effectively in real-world scenarios.
The News 01/08/2025
Hinoki wood (Japanese cypress – Chamaecyparis obtusa) is a precious type of wood native to Japan, known for its light color, fine grain, and pleasant natural aroma. Thanks to its antibacterial, moisture-resistant, and heat-resistant properties, Hinoki has long been used in traditional architecture, such as temples, onsen bathtubs, and especially saunas. With its calming fragrance and exceptional durability, Hinoki is increasingly favored in modern bathroom design, offering a luxurious and serene experience for users.
The News 22/07/2025
In the context of rapid urbanization, localized flooding and water pollution are becoming increasingly severe, particularly due to stormwater runoff on impermeable surfaces such as concrete and asphalt. Permeable pavers have emerged as an advanced, environmentally friendly construction material designed to reduce stormwater runoff and filter pollutants at the source. Not only do these pavers allow for rapid water drainage, but they also act as a primary filter that traps dust, heavy metals, and vehicle-related contaminants, thus improving urban environmental quality. This material is a part of the new wave of sustainable construction trends, widely adopted in developed countries but still relatively new in Vietnam.
The News 11/07/2025
In the era of digital technology and the explosive growth of the Internet of Things (IoT), architecture is no longer merely the art of construction—it has evolved into an intelligent ecosystem, where buildings can sense, analyze, and respond to their environment. One of the most advanced solutions driving breakthroughs in modern construction is the sensor-embedded brick with integrated circuits. This is no longer a passive traditional building material, but rather a “sensing brick,” equipped with internal sensors and processing microchips capable of measuring temperature, humidity, vibration, and impact forces, and wirelessly transmitting data in real-time. The application of this technology in construction not only enhances the ability to monitor structural safety but also unlocks the potential for smart, sustainable, and energy-efficient buildings. This topic aims to clarify the role of integrating sensors and microchips into building bricks, the manufacturing process, and notable practical applications.
The News 30/06/2025
3D concrete tiles are a modern type of building and decorative material, made from concrete or geopolymer, with a raised three-dimensional surface featuring geometric, natural, or artistic patterns. Thanks to their strong visual effects, 3D concrete tiles not only provide high aesthetic value but also help improve sound insulation, thermal resistance, and waterproofing. With advantages in durability, ease of construction, and environmental friendliness, especially when combined with recycled materials such as ground brick waste, 3D concrete tiles are becoming an ideal material solution for both interior and exterior modern spaces.