Stainless Steel A Sustainable Choice for a Greener Future_ Part 01

Stainless Steel: A Sustainable Choice for a Greener Future_ Part 01

Stainless steel, also known as inox, corrosion-resistant steel (CRES), and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost
  1. WHAT IS STAINLESS STEEL?

Stainless steel is a group of iron-based alloys containing at least 10.5% chromium, with added elements like nickel and molybdenum to enhance corrosion resistance, heat resistance, and fabricating properties. The American Iron and Steel Institute (AISI) recognizes over 60 grades of stainless steel. Chromium forms a protective oxide layer on the surface, preventing rust by blocking oxygen from reaching the iron base.

Stainless Steel A Sustainable Choice for a Greener Future_ Part 01

  1. STAINLESS STEEL_THE ULTIMATE RENEWABLE RESOURCE

“ Society is increasingly concerned about the health of the natural environment and the impact of materials on ecosystems. This awareness has led to the concept of “greening,” where the environmental performance of materials influences selection decisions.

The production process begins with selecting raw materials, which typically consist of 75-85% recycled stainless steel scrap and alloying elements like chromium, nickel, and molybdenum. This mixture is melted in an electric furnace and transferred to an Argon Oxygen Decarburization (AOD) vessel to reduce carbon content. Gaseous emissions are collected, and dust is recycled to recover metallic compounds. The molten stainless steel is then cast into slabs or ingots, which are further processed into various products through rolling, forging, or drawing.

Stainless Steel A Sustainable Choice for a Greener Future_ Part 01

  1. STAINLESS STEEL _EXCELLENCE IN PRODUCT STEWARDSHIP

Criteria for Evaluating the "Greenness" of Stainless Steel

A variety of criteria can assess the environmental performance of stainless steel, including:

  1. Environmental Principles
  2. Environmental Management Systems
  3. Materials, Energy, and Water Usage
  4. Pollution Prevention
  5. Waste Minimization
  6. Recycling
  7. Environmental Compliance Evaluations
  8. Participation in Cooperative Environmental Councils and Partnerships
  9. Communication of Environmental Activity
  10. Environmental Releases and Sustainable Relationships with the Natural Environment

Source:  Specialty Steel Industry of North America (SSINA).


Others

Tropical Modern Villa Architecture – A Unique Impression in Urban Vietnam

The News 10/11/2025

Tropical Modern Villa Architecture – A Unique Impression in Urban Vietnam

In the midst of the hustle and bustle of urban life, many Vietnamese families are looking for a different living space – where they can enjoy modernity without being far from nature. Tropical Modern villa architecture is the perfect answer to this need. Not only an aesthetic trend, this is also a smart design philosophy, harmoniously combining technology, local materials and Vietnam's typical tropical climate.

Hemp-lime (hempcrete) From hemp to green building materials

The News 25/10/2025

Hemp-lime (hempcrete): From hemp to green building materials

Hemp-lime (hempcrete) is a non-load-bearing covering material consisting of a hemp wood core (hemp shiv/hurd) combined with a lime-based adhesive, outstanding for its insulation – moisture conditioning – indoor environmental durability; in particular, IRC 2024 – Appendix BL has established a normative line applicable to low-rise housing, strengthening the technical-legal feasibility of this biomaterial.

Bahrain World Trade Center Advanced Structure and Sustainable Design Principles – A Modern Architectural Icon

The News 11/10/2025

Bahrain World Trade Center: Advanced Structure and Sustainable Design Principles – A Modern Architectural Icon

Amid rapid urbanization and global climate change, architecture is not only construction but also the art of harmonizing people, the environment, and technology. The Bahrain World Trade Center (BWTC)—the iconic twin towers in Manama, Bahrain—is a vivid testament to this fusion. Completed in 2008, BWTC is not only the tallest building in Bahrain (240 meters) but also the first building in the world to integrate wind turbines into its primary structure, supplying renewable energy to itself [1]. This article explores the BWTC’s structural system and design principles, examining how it overcomes the challenges of a desert environment to become a convincing sustainable model for future cities. Through an academic lens, we will see that BWTC is not merely a building but a declaration of architectural creativity.

Transparent Wood – A Future Material to Replace Glass in Green Architecture

The News 04/10/2025

Transparent Wood – A Future Material to Replace Glass in Green Architecture

As buildings move toward net zero architecture and glare free daylighting, traditional glass façades reveal limitations: high thermal conductivity (~0.9–1.0 W/m·K), susceptibility to glare, and shattering on impact. In this context, transparent wood (TW) is emerging as a multifunctional bio based material: it offers high light transmission yet strong diffusion (high haze) to prevent glare, lower thermal conductivity than glass, and tough, non shattering failure. Recent reviews in Energy & Buildings (2025) and Cellulose (2023) regard TW as a candidate for next generation windows and skylights in energy efficient buildings. [1]

Flood-Free City The Secret of the Fushougou System

The News 27/09/2025

Flood-Free City: The Secret of the Fushougou System

Urban flooding is one of the greatest challenges of the modern era, when sudden and unpredictable rainstorms can paralyze entire cities. Few would imagine that over a thousand years ago, people had already discovered a sustainable solution: the Fushougou drainage system in the ancient city of Ganzhou, Jiangxi. Built during the Northern Song dynasty, this project remains effective to this day, protecting the city from floods—even during historic deluges. The story of Fushougou is not only a testament to ancient engineering but also a valuable reference for today’s cities seeking answers to water and flooding problems.

Carbon-Negative Concrete Technology The Future of Environmentally Friendly Building Materials

The News 20/09/2025

Carbon-Negative Concrete Technology: The Future of Environmentally Friendly Building Materials

The construction industry is currently facing immense pressure to reduce carbon emissions, as concrete is not only one of the most widely used materials but also a major source of CO₂ due to its reliance on Portland cement. In response, Shimizu Corporation has conducted extensive research to develop sustainable material solutions aimed at achieving carbon neutrality. One of the most remarkable outcomes is carbon-negative concrete, which partially replaces cement and aggregates with biochar. This biochar is produced from sawdust through a carbonization process and has the unique ability to retain a significant amount of carbon that would otherwise be released into the atmosphere through natural decomposition or combustion. Thanks to this property, carbon-negative concrete not only maintains the necessary mechanical strength for construction but also directly contributes to reducing greenhouse gas emissions. This innovation is considered a promising step that opens new directions for the advancement of green construction in Japan and worldwide.